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On the Localization Transition of Random Copolymers
Near Selective Interfaces
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In this note we consider the (de)localization transition for random directed (1+
1)–dimensional copolymers in the proximity of an interface separating selec-
tive solvents. We derive a rigorous lower bound on the free energy. This yields
a substantial improvement on the bounds from below on the critical line that
were known so far. Our result implies that the critical curve does not lie below
the critical curve set forth by Monthus (Eur. Phys. J. B 13, 111–130, 2000) on
the base of a renormalization group analysis. We discuss this result in the light
of the (rigorous and non rigorous) approaches present in the literature and,
by making an analogy with a particular asymptotics of a disordered wetting
model, we propose a simplified framework in which the question of identifying
the critical curve, as well as understanding the nature of the transition, may be
approached.

KEY WORDS: Copolymers; localization transition; large deviations; wetting
models.

1. INTRODUCTION

1.1. The Model

Much effort has been put into understanding the physical properties
of heteropolymers containing hydrophilic and hydrophobic components
(in conformity with a relevant part of the literature, we will call them
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7 – Denis Diderot, U.F.R. Mathematiques, Case 7012, 2 Place Jussieu 75251 Paris Cedex
05, France; e-mail: bodineau@math.jussieu.fr

2 Laboratoire de Probabilités de P 6 & 7 (CNRS U.M.R. 7599) and Université Paris
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copolymers). Part of this effort has focused on the behavior of such poly-
mers in presence of an interface separating two solvents: one which favors
the hydrophilic components and one which favors the hydrophobic com-
ponents.

From the modelization viewpoint we stay in the line of work initi-
ated by Garel et al.(9) and the copolymer is for us a directed random walk
whose bonds have randomly chosen characteristics (the charges): bonds
with positive (respectively, negative) charges energetically prefer to lie in
the upper (respectively, lower) half plane.

Let S={Sn}n=0,1,... be a random walk with S0 =0 and Sn=∑n
j=1Xj ,

{Xj }j a sequence of IID random variables and P (X1 =±1) = 1/2. For
λ�0, h�0, N ∈ N and ω= {ωj }j=1,2,... ∈ R

N we introduce the new prob-
ability measure

dPλ,hN,ω
dP

(S) = 1

Z
λ,h
N,ω

exp

(
λ

N∑
n=1

(ωn+h) sign (Sn)

)
, (1.1)

where Zλ,hN,ω is the partition function and sign (S2n) is set to be equal to
sign

(
S2n−1

)
for any n such that S2n=0.

We are going to choose ω as an IID sequence of symmetric random
variables and denote by P its law. We suppose that

M(α) :=E [exp (αω1)]<∞ (1.2)

for α in a neighborhood of zero. By symmetry M(α)= M(−α) for every
α.

Under the previous assumption on the distribution of the charges,
it is well known(13) that, for h= 0, the charge-solvent energy dominates
over the random walk entropy and the polymer lies in a neighborhood
of the horizontal axis, that we call interface and we therefore talk of
localization at the interface. This happens regardless of the value of the
temperature 1/λ. For h > 0, a non-trivial competition enters the picture
and a de-localization phenomenon is observed for h sufficiently large, with
the walk spending essentially all of its time far from the interface. The
simplest way to detect this transition is on the level of the free energy
which is defined as

f (λ,h) = lim
N→∞

1
N

log Zλ,hN,ω. (1.3)
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The limit has to be understood in the P (dω)-almost sure sense or in the
L1 (P) sense. A proof of the existence of such a limit goes along a stan-
dard line and we refer to ref. 8 for the details. We stress that f (λ,h) is
non random.

An important elementary observation is that the contribution of the
polymers which do not cross the interface leads to the following lower
bound :

f (λ,h)�λh. (1.4)

In fact if we set �+
N ={S : Sn >0 for n=1,2, . . . ,N}

1
N

log Zλ,hN,ω � 1
N

log E

[
exp

(
λ

N∑
n=1

(ωn+h) sign (Sn)

)
;�+

N

]

= λ

N

N∑
n=1

(ωn+h) + 1
N

log P
(
�+
N

) N→∞−→ λh, (1.5)

where the limit has to be understood in the almost sure sense: we have in
fact applied the law of large numbers, along with the well known fact that
P
(
�+
N

)
behaves like N−1/2 for N large. In view of (1.3) and of (1.5) we

feel entitled to partition the phase diagram in the following way:

• the localized region: L={(λ, h) : f (λ,h)>λh};
• the delocalized region: D ={(λ, h) : f (λ,h)=λh}.

This phase diagram decomposition does correspond to sharply differ-
ent behaviors of the trajectories of the copolymer, in particular strong path
localization results are available if (λ, h) ∈ L, cf. refs. 1, 2 and 13, with
the copolymer sticking close to the interface. Proving precise delocalization
path properties when (λ, h) is in D, or at least in the interior of D, seems
to be one of the hardest unsolved challenges on this model. Nevertheless
some results are available (refs. 2 and 8, see Fig. 1).

In ref. 3 it has been proven, for the case P(ω1 =±1)= 1/2 that there
exists a continuous non decreasing function hc : [0,∞)−→ [0,1) such that
hc(0)=0 and

D = {(λ, h) : h�hc(λ)} . (1.6)
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Fig. 1. Phase diagram of the localization/delocalization transition. We have sketched inside
the region D the expected behavior of a delocalized polymer trajectory on a large scale: the
polymer is entropically repelled away from the interface (this is rigorously understood only in
a very weak sense). On the contrary, in region L the polymer remains close to the interface
and the drawing in this case is on a small scale: the localized polymer typically stays at a dis-
tance O(1) no matter how long the chain is. We stress also that the hc(·) in this figure is the
one observed if ω1 is a bounded random variables. In the unbounded case hc(·) may tend to
infinity or even diverge for a finite λ as it is clear from Theorem 1.1.

A number of properties have been proven in ref. 3 about this curve, in par-
ticular that

hc(λ)�
1

2λ
log cosh(2λ), (1.7)

and that the slope at the origin is positive, i.e., that there exists

lim
λ↘0

hc(λ)

λ
=: mc ∈ (0,1]. (1.8)

Of course mc�1 follows from (1.7). Moreover, limλ→∞ hc(λ)=1.

The result that we present here is the following:

Theorem 1.1. For a general distribution of the charges such that
(1.2) holds, there exists an increasing function hc : [0,∞)−→ [0,∞] such
that (1.6) holds. Moreover,

h(λ) := 1
4λ/3

log M (4λ/3) �hc(λ)�
1

2λ
log M (2λ) =: h(λ). (1.9)

As a consequence, the slope at the origin belongs to [2/3,1], meaning by
this that the inferior limit of hc(λ)/λ as λ↘0 is not smaller than 2/3 and
the superior limit is not larger than 1.
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We stress that what we are proving in this note is essentially just the
lower bound in (1.9): the upper bound on the critical curve is a very
minor modification of the arguments in ref. 3. What we are going to show
in the next two sections is that

{
(λ, h) : h�h(λ)

}⊂D and
{
(λ, h) : h<h(λ)

}⊂L, (1.10)

which is a restatement of (1.9) avoiding the issue of the existence of the
critical curve hc(·), defined implicitly in (1.6).

1.2. On Existence and Properties of hc(·)
The existence of the critical curve, along with some properties, follows

from (1.10) and convexity arguments. We outline them here.
First we change variables introducing F(λ,u)=f (λ,u/λ). Going back

to (1.3) one sees that F(·, ·) is a convex function. This implies in par-
ticular that the level set L0 := {(λ, u) : F(λ,u) − u�0}, which coincides
with {(λ, u) : F(λ,u) − u = 0}, is convex. Moreover, one directly verifies
that F(λ,u)− u does not increase as u increases. If we add the imme-
diate fact that F(0, u)= 0 for every u we see that there exists a convex
non decreasing function uc : [0,∞)→ [0,∞], with u(0)= 0, such that L0 =
{(λ, u) : u�uc(λ)}. Of course uc(·) is continuous over [0, l), for some l ∈
(0,∞] (l >0 because of (1.10)). If l is finite then uc(λ)=∞ for λ> l and
if uc(l)<∞ then uc(·) is left-continuous in l.

We now go back to the original variables and we have that, for λ>0,
f (λ,h)=λh if and only if h�uc(λ)/λ. A look at (1.6) suffices to conclude
that

hc(λ)= uc(λ)

λ
(1.11)

for every λ>0. But of course hc(0)=0 and, by (1.10), hc is continuous in
zero.

Equation (1.11) is saying more on hc(·), in particular that it is con-
tinuous except, possibly, for an infinite jump. Of course there is no jump
whenever M(α)<∞ for every α, by (1.10).

Note moreover that, with respect to earlier works, in Theorem 1.1
we are claiming strict monotonicity. Since hc(·) may diverge, what we are
claiming is precisely that hc(λ′) > hc(λ) whenever λ′ > λ and hc(λ) <∞.
The argument goes as follows: introduce u′

c(λ) for λ>0 such that uc(λ)<
∞ as the limit as δ↘0 of (uc(λ)−uc(λ− δ)) /δ and observe that, because
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of convexity, one has uc(λ′)�u′
c(λ)(λ

′ −λ)+uc(λ) for every λ′>λ. Thus

hc(λ
′)−hc(λ) �

(
λu′

c(λ)−uc(λ)
)(1
λ

− 1
λ′

)
. (1.12)

The desired strict monotonicity follows from the fact λu′
c(λ)−uc(λ) is positive

for λ> 0. In fact, since uc is convex and uc(0)= 0, if uc(λ)− uc(0)= λu′
c(λ)

then u′
c(·) should be constant on (0, λ]. According to (1.10) this is not possible

because uc(λ)=λhc(λ) behaves quadratically close to the origin.
The existence of the slope at the origin for hc(·) requires more sophis-

ticated arguments and it is beyond the purpose of this note.

1.3. The Localization/Delocalization Transition

Besides proving (1.10), our aim is to discuss various physical con-
jectures that appeared in the literature and to present, see Section 4,
a connection between the copolymer model and a special limit of a
quenched wetting model.

In the literature one can find a large number of papers on the co-
polymer near an interface problem. We make here a very short and biased
review, see ref. 8 for a more exhaustive survey. The problem has been set
forth, at least in the terms that we are stating here, in ref. 9, where rep-
lica techniques are used to derive a phase diagram like the one depicted
in Fig. 1. In ref. 9 there is a hint to the possibility that h′

c(0)=1 and such
a viewpoint is taken up more seriously in ref. 15. However, in ref. 14 the
value of 2/3 appears: the analysis is still based on replicas and ω1 is stan-
dard Gaussian.

Monthus in ref. 11 has applied to the copolymer model a general
renormalization scheme for one–dimensional disordered systems that has
been first proposed by Fisher,(7) in the context of the quantum Ising model
with transverse random magnetic field, and later successfully applied to
the random walk in random environment by Le Doussal et al.(10) The
sharp agreement between the results in ref. 10 and several rigorous results
available for the random walk in random environment inspires confidence
in the method. As a matter of fact, in the context of diffusions in random
environments, the renormalization has been made rigorous by Cheliotis.(4)

For the copolymer, the validity of the scheme as proposed by Monthus
in ref. 11 is an open question (our proof strongly relies anyways on her
ideas).

Our attention on the slope at the origin h′
c(0) is actually due to a

very simple reason: it is expected that such a quantity is largely model
independent. This is connected to the fact that at small coupling the typical
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length of the excursions, even in the localized regime, are very long and
this should allow replacing sum of random variables by Gaussian vari-
ables. Such a belief has been put forth by Bolthausen and den Hollander
in ref. 3, where the model with the following free energy is introduced

f̃ (λ, h)= lim
t→∞

1
t

log Ẽ
[

exp
(
λ

∫ t

0
sign (B(s)) (dβ(s)+hds)

)]
, (1.13)

where B = {B(t)}t and {β(t)}t are two independent standard Brownian
motions, of law respectively P̃ and P̃ and the limit in (1.13) is meant in
the P̃(dβ) sense. A very relevant property of f̃ is that it satisfies a scale
invariance, inherited from the Brownian scale invariance:

1
a2
f̃ (λa, ha)= f̃ (λ, h) for every a>0. (1.14)

In addition f̃ enjoys very much the same properties as f , in particular one
can show without much effort that f̃ (λ, h)�λh and therefore, one can par-
tition the phase space, into a delocalized and localized region, exactly in
the same way as for the discrete model. Along with that one shows also
that there exists h̃c : [0,∞)→ [0,∞) whose graph separates the delocalized
region (above) from the localized region (below). It is then immediate to
extract from (1.14) that there exists a non negative constant mc such that
h̃c(λ)=mcλ. The notation mc for the slope of h̃c(·) has not been chosen
carelessly: it does coincide with the constant appearing in (1.8) and there-
fore with the slope at the origin of hc. This is the main result proven in
ref. 3. It has been proven only for a particular choice of S and ω. How-
ever, the (rather involved and delicate) proof, essentially based on repeated
use of (Local) Central Limit arguments, suggests that it should be a very
general statement. As a matter of fact one can generalize it to a wider
class of ω’s and further generalizations are under investigation [Caravenna,
work in progress]: one possibly expects (1.8) to hold whenever the incre-
ments of S and the sequence ω are in the domain of attraction of the
Central Limit Theorem and, apart for the existence of suitable exponen-
tial moments that is unavoidable, the only expected extra requirement is
var (ω1)= 1. If var (ω1) �= 1, but of course non zero, the Brownian model
has to be modified in an obvious way so that the results may be mapped
back to var (ω1)=1 by scaling.
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2. FREE ENERGY ESTIMATES

As we already remarked in Section 1.2, Theorem 1.1 boils down to
check (1.10), namely that that f (λ,h)= λh for h�h(λ) and f (λ,h)>λh

for h<h(λ).

2.1. Upper Bounds on the Free Energy

It is immediate to see that a direct application of the quenched to
annealed bound, that is E log Zλ,hN,ω� log EZ

λ,h
N,ω does not help to establish

delocalization, since one gets f (λ,h)� log M(λ)+λh. One way to produce
performing quenched to annealed estimates is to modify the model in a
way that the quenched free energy does not change, while the annealed
free energy does. We observe then that

f (λ,h)−λh= lim
N→∞

1
N

E

[
log E

(
exp

(
λ

N∑
n=1

(ωn+h) (sign(Sn)−1)

))]
,

(2.1)

which is an immediate consequence of the existence of the free energy
in the L1 sense and that E (ω1) = 0. Apply Jensen inequality and the
Fubini–Tonelli theorem at this stage to get

f (λ,h)−λh � lim
N→∞

inf
1
N

log E

[
N∏
n=1

exp ψ̃ (λ (sign(Sn)−1))

]
(2.2)

with ψ̃(r)= log M(r)+ hr. But sign(Sn)− 1 takes only the values 0 and
−2 so that ψ̃ (λ(sign(Sn)−1)) �0 if h� log M(2λ)/2λ. We have therefore
proven the upper bound in (1.9). (Upper Bound in (1.10))

Remark 2.1. It is worth pointing out here that this way of establish-
ing free energy upper bounds dates back to Morita(12) and it actually cor-
responds to the first order Morita’s approximation, based on the fact that
one adds to the Hamiltonian terms of the type γ

∑N
n=1ωn, γ ∈R, viewed

as a Lagrange multiplier inserted to constrain the average of ω to be zero
also in the annealed context.

2.2. Lower Bounds on the Free Energy

It is widely believed (e.g., refs. 9, 11, 14, and 15) that the transition
is of order larger than one, which implies that the length of the polymer
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excursions diverges approaching the critical curve from inside L. Deriving
a lower bound on the free energy boils down to guess the typical behav-
ior of the polymer close to the critical curve: a precise control on the free
energy would require the proper scaling of the excursions. Below we pres-
ent two localization strategies which lead to different lower bounds.

We start with the rigorous procedure adopted by Bolthausen and den
Hollander in ref. 3. They essentially prove that for small values of λ there
is some c>0 such that

f (λ,0)� cλ2 (2.3)

and from this it is extracted in a rather straightforward way that f (λ, ελ)�
cλ2/2 for ε sufficiently small, which entails immediately h′

c(0) > 0. The
bound (2.3) follows from a relatively accurate entropy/energy argument,
carried out via a suitable entropy inequality with which they compare the
polymer measure with the measure of an homogeneous walk with a con-
stant drift toward zero. Such a walk is finitely recurrent with typical excur-
sion length of order 1/λ2. The disordered (sum of ω’s) inside a typical
excursion is of the order of 1/λ, by the Central Limit Theorem: the fact
that such an energetic contribution does not have a definite sign actu-
ally causes no problem since with probability 1/2 the sign of the walk in
the excursion matches the sign of the energy. The estimate therefore boils
down to comparing the energetic gain with the entropy cost for having
changed the underlying walk.

The key points of such an approach are that it exploits the typical
fluctuations of the disorder and that it keeps much of the entropy of the
original walk (as a matter of fact, no random walk trajectory is neglected).
However such a localization strategy is uniform in space and does not
take into account the inhomogeneous character of ω.

Monthus(11) proposes instead an inhomogeneous localization strategy
based on an Imry–Ma type argument. Moreover, the key estimates are
provided by large deviations of the disorder and not by the fluctuations.
We outline now the Monthus localization strategy with our notations and
organizing the argument in such a way that it can be exploited later in the
proof of Proposition 3.1.

Let us restart from the idea that the phase transition is of order
larger than the first, so that then f ∈C1 and therefore the expected empir-
ical average of the number of excursions must be o(N) (immediate conse-
quence of the fact that ∂f (λ,h)/∂h=λ on the critical line). In other words
the expected average size of the excursions must diverge approaching the
critical line from inside the localized region L. Therefore, in L, but close
to the critical line, it is reasonable to expect that the typical configurations
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of the polymer are constituted by very long excursions in the upper half-
plane with occasional, mostly short, excursions to the negative half-plane.
These short negative excursions most probably correspond to atypical (and
therefore rare) stretches in ω. Let us therefore consider one of these short
excursions, without being too fussy with definitions: it will be surrounded
by two long positive excursions, (see Fig. 2). We call QL, respectively QR,
the sum of the ωn’s in the left positive excursion, respectively, in the right
positive excursion. We call instead Q the sum of the ωn’s in the middle
excursion. The length of the three excursions are, in order, �L, � and �R.
Notice that there are many more polymer trajectories that stay positive on
the whole stretch �L +�+�R, than trajectories that change sign in the mid-
dle interval. Therefore, unless an atypical stretch of ωn’s corresponds to
the negative excursion, there would be no compelling reason for the poly-
mer to visit the negative half plane (that would entail an energy loss of
about 2λ�h on top of the entropy cost). However (arbitrarily large) atyp-
ical ω-stretches do exist, in particular with ω̃n=ωn+h and q <h (but we
have in mind q <0)

P

(
�∑
n=1

ω̃n <q�

)
� exp (−��h(q)) (2.4)

as � tends to infinity (� denotes the asymptotic equivalence of the loga-
rithms of both sides). �h(·) is the large deviations functional (or Cramer
functional) for sums of IID random variables. It is well-known(5) that it
can be expressed as the Legendre (or Fenchel–Legendre) transform of the
logarithmic moment generating function of ω̃1:

�h(q)= sup
x∈R

(
xq− log E [exp (xω̃1)]

)
= sup
x>0

(
x(h−q)− log M(x)

)
. (2.5)

We remind that �h(·) is a convex function, which is possibly unbounded
outside an interval.

Fig. 2. The Monthus argument identifies L as the region of parameters for which the con-
figuration configuration switch is unfavorable on the base of an energy-entropy comparison,
with the � interval selected because of its atypical property that the empirical average of the
ω̃ variables is about q.
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In view of (2.4), a rare �–stretch, with charge Q= �q, will happen
approximately every exp (��h(q)) monomers. Therefore, both �L and �R
are of this order and so log �L(R)≈��h(q).

At this point we are in the position to compare the two configura-
tions in Fig. 2 via energy and entropy estimations: the free energy contri-
bution of configurations making a negative excursion in correspondence of
the atypical ω-stretch is

λ (QL+QR −Q)− 3
2

log �L − 3
2

log �R − 3
2

log � (2.6)

in which of course we used the asymptotic of the probability of returns
of the walk. On the other hand, the free energy contribution of configu-
rations making no negative excursion in the stretch of length �L + �+ �R
is

λ (QL +QR +Q)− 3
2

log (�L +�+�R) . (2.7)

Notice that if Q≈�q the difference of these two expressions is, to leading
order in �→∞, equal to

f :=2λ|q|�− 3
2
��h(q). (2.8)

In view of the steps we have outlined it seems reasonable to tune
the quantity q in order to find the most favorable negative excursions: this
amounts to maximizing f with respect to q. According to this, the local-
ization should be characterized by the rule

sup
q>0

(
4
3
λq−�h(−q)

)
>0. (2.9)

Since λ�0, this condition does not change if the supremum is taken for
q ∈ R. Therefore, the expression on the right–hand side of (2.9) is the
Legendre transform of �h(·), computed at −4λ/3. So that, by (2.5) and
by the duality property of the Legendre transform (see e.g., ref. 5, Sec-
tion 4.5.2), the expression on the left–hand side of (2.9) is the logarithmic
moment generating function of ω̃1 computed in −4λ/3. In other words,
the localization condition (2.9) is equivalent to

log E [exp (−4λω̃1/3)]= log M(4λ/3)− (4λh/3)>0, (2.10)

which is exactly h<h(λ).
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We conclude this section by commenting on the Imry–Ma argument
we have just outlined. First we recall that the lower bound h(λ) coincides
with Monthus prediction of the critical curve. Moreover the Imry–Ma
argument is just the first step in ref. 11, namely the step that sets the
parameters for the Fisher renormalization model that is supposed to catch
the essential features of copolymers close to criticality. We have not been
able to prove whether this Imry–Ma argument catches or not the correct
behavior of the polymer and whether it predicts the right expression for
the critical curve. Nevertheless we should point out that the renormaliza-
tion group strategy does not apply when h= 0: the rigorous result (2.3)
is in contradiction with the results in ref. 11. By accepting the Imry–Ma
argument one is implicitly considering only a very small subset of tra-
jectories, while the first localization strategy(3) that we have considered
accounts for all the trajectories and in this way it catches the contribu-
tion of fluctuations in a much more efficient way, in fact optimal, in the
sense that f (λ,0) is of the order of λ2 for λ small (the upper bound fol-
lows immediately from an annealed estimate).

3. A LOWER BOUND ON THE CRITICAL CURVE

We now elaborate on the ideas presented in Section 2.2 to show the
following.

Proposition 3.1. h(λ)�hc(λ) for every λ�0.

Proof. As we are looking for a lower bound on ZN,ω, we are
entitled to restrict the expectation defining ZN,ω to a suitable set of tra-
jectories. We choose a large even number �, we assume for ease of expo-
sition that N/� ∈ N and we set Qj(ω) = ∑(j+1)�

n=j�+1 (ωn+h). Of course
{Qj }j=0,... ,(N/�)−1 is a family of IID variables. We set also

Yj =1{Qj �−q�}, (3.1)

where q is the q for which the expression in (2.9) achieves the maximum.
By Cramer’s theorem as � tends to infinity

pY :=P (Y1 =1)� exp (−��h(−q)) . (3.2)

Given ω we consider the random set of indexes A(ω)= {j ∈ {1, . . . ,
(N/�)−1} : Yj =1} and the random set G�,N(ω) of trajectories {Sn}n=1,... ,N
such that for n∈{1,2, . . . ,N}
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• Sn=0 if and only if either n/� or (n/�)−1 are in A;

• Sn <0 if and only if 
n/��∈A (
·� denotes the integer part of ·).

We set ι(ω)= max{j ∈N : j��N and Yj−1(ω) �=Yj (ω)}, with ι(ω)= 0
if the set is empty.

We introduce also

fN,ω(λ,h) := 1
N

log E

[
exp

(
λ

N∑
n=1

(ωn+h) sign (Sn)

)]
− λ

N

N∑
n=1

(ωn+h) .

(3.3)

By the law of large numbers the second term in the right–hand side con-
verges P(dω)–a.s. to λh and so fN,ω(λ,h) converges in the same sense to
f (λ,h)−λh. We have

fN,ω(λ,h) � 1
N

log E

[
exp

(
λ

N∑
n=1

(ωn+h) sign (Sn)

)
; G�,N(ω)

]

− λ

N

N∑
n=1

(ωn+h)

� 2λ
N

|A(ω)|�q+ 1
N

log P
(
G�,N(ω)

)
, (3.4)

where the notation | · | denotes the cardinality of the set · and we
have used the fact that the Boltzmann weight takes a constant value on
G�,N(ω) and this value differs from λ

∑N
n=1 (ωn+h) only for the contri-

bution of the negative excursions. Let us evaluate the probability term:
we denote by K(2n) the probability that the simple random walk, starting
from S0 =0, stays positive for 2n−1 steps and comes back to zero at the
2nth step: it is well known (ref. 6, Ch. III) that log K(2n)=−(3/2) log n+
O(1) for n large. Therefore,

1
N

log P
(
G�,N(ω)

) = |A(ω)|
N

log K (�)+ 1
N

|A(ω)|∑
k=1

log K (Vk�)

+ 1
N

log P (Sn >0, n=1,2, . . . ,N −�ι(ω)) ,
(3.5)

where the variables {Vk(ω)}k=1,2,... ,|A(ω)| count how many groups of � sites
are inside each of the |A(ω)| excursions in the upper half–plane (in Fig. 3
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Fig. 3. The lower bound strategy is obtained by restricting to polymer trajectories that
make negative excursions only in correspondence of rare stretches (four in the figure) of �
monomers.

we have |A|=4 and V1 =7, V2 =7, V3 =4 and V4 =7). The term contain-
ing the variable ι(ω) accounts for the last excursion of the polymer: note
immediately that the term containing ι(ω) is non positive and bounded
below by a term which is O((log N)/N) and therefore it is irrelevant in the
limit of N→∞. In order to evaluate the other two terms it is convenient
to introduce {Vk(ω)}k∈N, defined by letting the S-chain run indefinitely,
which is an IID sequence of geometric random variables of parameter pY .
By the law of large numbers one has

lim
N→∞

|A(ω)|
N

= pY

�
, P(dω)-a.s. (3.6)

Furthermore from the asymptotics of K there exists c>0 such that∣∣∣∣∣∣ 1
N

|A(ω)|∑
k=1

log K (Vk�) + |A(ω)|
N

3
2|A(ω)|

|A(ω)|∑
k=1

log (Vk�)

∣∣∣∣∣∣ � c
|A(ω)|
N

(3.7)

for every �, N and ω. From Jensen inequality, we get

− 3
2|A(ω)|

|A(ω)|∑
k=1

log (Vk�) � −3
2

log

 1
|A(ω)|

|A(ω)|∑
k=1

Vk�


� −3

2
log

(
N

|A(ω)|
)
. (3.8)

Combining the previous inequalities with (3.6), we see that P(dω)-a.s.

lim
N→∞

1
N

log P
(
G�,N(ω)

)
�pY

(
3
2

log (pY )− 3
2

log �−2c
)
. (3.9)
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We are now ready to go back to (3.4). By the asymptotics (3.2), we obtain
for large �

f (λ,h)−λh�pY �
(

2λq− 3
2
�h (−q)+o(1)

)
. (3.10)

We have already observed, recall (2.8)–(2.10), that if h<h(λ) then the non
vanishing term inside the parentheses in the right–hand side of (3.10) is
positive (for some � large enough). Therefore, f (λ,h)− λh > 0 and the
proof is complete.

4. A LINK WITH WETTING PHENOMENA

4.1. Diluted Disordered Wetting

The proof of Proposition 3.1 suggests a simplified model in which it
might be easier to establish free energy upper bounds and/or test the valid-
ity of the approach in ref. 11 (see Remark 4.1). Consider the model

dP+,β
N,ξ

dP+
N

(S) = 1

Z
+,β
N,ξ

exp

(
β

N∑
n=1

ξn 1{Sn=0}

)
, (4.1)

where β�0, ξ = {ξn}n∈N is an IID sequence of variables taking values
either 0 or 1 with P(ξ1 =1)=p and P+

N( · )=P
( · |�̃+

N

)
, with

�̃+
N ={S : Sn�0 for n=1,2, . . . ,N} . (4.2)

P+,β
N,ξ is of course a wetting model with random liquid–substrate interac-

tion (for the vast literature on wetting models we refer to the references
in ref. 8). We will consider it in the quenched setting and introduce the
free energy

f(β,p)= lim
N→∞

1
N

log Z+,β
N,ξ , (4.3)

where the limit has to be understood in the P(dξ)-a.s. sense or in the cor-
responding L1-sense. The existence of such a limit, as well as the self–aver-
aging property, can be established by any of the methods in (ref. 8, Ch. 2).
Moreover by mimicking (1.5) one immediately sees that f(β,p)�0. Thus,
it is natural to talk about the delocalized phase space region as the sub-
set of values (β,p) in [0,∞)× [0,1] such that f(β,p)= 0. The localized
region is defined as the complementary set.
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Another elementary observation is that f(β, ·) in non decreasing: this
is an immediate consequence of a coupling argument for ξ sequences with
different values of p (of course f(·, p) is also non decreasing). This implies
that there exists pc(β) such that the delocalized region is characterized by
p�pc(β), and the localized region by p>pc(β).

It turns out that pc(β) tends to zero as β tends to infinity. In fact
performing the annealed bound (Jensen’s inequality and Fubini–Tonelli’s
theorem) we obtain

E

[
1
N

log Z+,β
N,ξ

]
� 1
N

log EZ
+,β
N,ξ = 1

N
log E+

N

[
exp

(
β̃

N∑
n=1

1{Sn=0}

)]
,

(4.4)

with β̃= log (p exp(β)+ (1−p)). Take the limit N→∞ in (4.4) to obtain
that f(β,p) is bounded above by the free energy of a standard (i.e.,
non disordered) wetting model at inverse temperature β̃. The latter is an
exactly solvable model(8) and one knows that such a model is delocalized,
i.e., its free energy is zero, if β̃� log 2. This immediately implies in partic-
ular that

− lim inf
β→∞

1
β

log pc(β)�1. (4.5)

Notice that for such a limit the value log 2 of the critical β̃ is irrelevant:
it suffices to know that there exists a positive critical β̃ and our argument
applies therefore to more general random walk models, in particular to
any symmetric non trivial walk with independent increments and jumps in
{−1,0,1}.

By repeating the strategy of the proof of Proposition 3.1, that is
by restricting the evaluation of the free energy to S-trajectories that visit
every single site n such that ξn (of course n must be even), one immedi-
ately gets

− lim sup
β→∞

1
β

log pc(β)�2/3. (4.6)

Needless to say, we are facing the same difficulty that we have been facing
for the copolymer model of the first three sections.

Remark 4.1. It is natural to ask whether clarifying the exponential
asymptotics of pc(β) gives more than just a suggestion on the value of mc,
recall (1.8). The answer is: any lower bound one can get on the quantity
on the left-hand side of (4.6) is a lower bound on mc.
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4.2. Comparison of Strategies

In the light of the simplified model we just introduced, it is worth
rethinking the copolymer localization strategies discussed in Section 2. It
should be clear that such a reduced model has been built on the following
belief: the charges (ω) drive the copolymer in the sense that the copolymer
has no choice but visiting the lower half-plane only in correspondence of
atypical stretches in the environment. However this may happen in a vari-
ety of different ways: for our lower bound we have chosen a fixed large
scale �, but one should in principle consider all scales at the same time. In
this sense the reduced model may appear to be a poor reduction of the co-
polymer model, since it has only one scale (β→∞ corresponds to looking
at p of the order of exp(−mβ), m> 0). In reality the reduced model has
a hidden multi-scale structure that is very close to the one of the original
model: if for β large we are going to observe charges (we say that there is
a charge in n if ξn=1) at typical distance 1/p≈exp(mβ), somewhat atypi-
cal events of clumps of charges do happen with positive density along the
chain. To these clumps the procedure outlined in Fig. 2 does not apply
directly: in the renormalization language, one can deal with these clumps
only after several renormalization steps. In order to show that one can
replace 1 with 2/3 in (4.5) one has (directly or indirectly) to show that, in
spite of the enormous variety of clumps of charges that we are going to
observe along the infinite chain, these clumps cannot ally in a fancy way
that is not caught by the scheme in Fig. 2.
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